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Note 

Computation of Molecular Integrals 
over Partially Generalized Hermite-Gaussian Functions 

I. INTR~OUCTI~N 

Hermite-Gaussian functions (HG) as basis functions have been introduced by 
?5vkoviC and MaksiC Cl, 21. Thereafter, these functions have been treated in a 
series of papers [3-lo]. In particular, they widely used in X, [ 11, 121 and in some 
ab initio calculations [ 13-151. In addition, a method for the expansion charge 
distributions of the Cartesian Gaussian functions (CG) in terms of HG has been 
developed by McMurchie and Davidson [16] and Saunders [ 173. We prefer, 
however, to build Hermite polynomials in the basis set functions from the very 
beginning. For that purpose we proposed and briefly discussed some generaliza- 
tions of original HG function [ 181. The idea behind this approach is that Hermite 
polynomials have some special properties which enable expression of many 
molecular integrals in a close form. Our preliminary calculations indicate that 
generalized HG functions deserve further tests ‘and examination [ 191. 

Hermite-Gaussian functions at a centre A = (A,, A,, A,) are defined by [2] 

f n,,n*,“,(uP TA) = fJ -n/2(d/lJAx)“1 (c?/cYA~)~* (c!J/~YA~)“~ exp( -&) 

= ~,,(u1~2x,)H,,(u’~2y,)H,,(a’~2z,) exp( -ari), (1) 

where: n=ni +n,+n,, H,(x) is the Hermite polynomial of the order n and 
xA=x-AA,. 

By distinguishing nonlinear parameters appearing in the polynomial and 
exponential parts, special generalized Hermite-Gaussian functions (SGHG) are 
obtained. They are defined in the following way 

cp n,,n2,.,(a7 b, rA)=Hn,(bIxA) H,,(b,y,)H,,(b,z,)exp(-ur:,). 

By combining SGHG of the same exponential (a) and polynomial (b) parameters 
but of the different “quantum” numbers n, , n2, and n3, composed Hermite- 
Gaussian functions (CHG) are obtained as follows: 

(P:.“2.?ll (a, b, rA)= 2 2 ? Ck,(A,)Ck,(A,)Ck,(A,) 
k,=O kz=O k,=O 

x (Pk,,k2.kl(“’ b, r~). 
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Off-centre shift in the Hermite part of SGHG defines the third generalization of 
HG, i.e., Hermite off-centre Hermite-Gaussian functions (HOCHG): 

4,nm (a, h PA)= Hn,(h(xA +P,))H,,(UY, +P~ML,(W, +A) 

x exp( - arA). (4) 

In what follows three generalizations above (SGHG, CHG, HOCHG) of HG 
functions are called partially generalized Hermite-Gaussian functions (PGHG). 

The further generalizations, like Gaussian off-centre shift Hermite and Guassian 
off-centre shift in SGHG an analogous generalizations for CGH, will not be 
considered here. 

In the present paper, evaluation of the molecular integrals over PGHG functions 
is discussed, with particular emphasis on their performance and computational time 
saving. 

II. EXPANSION OF TWO-CENTRE PRODUCT OF PGHG FUNCTIONS 

The product of two PGHG functions located at generally two different centres A 
and B can be expanded in terms of HG functions located at the centre P in the 
following way: 

H,(bx,)H,(b’x,) exp( --ax; - u’x’,) 
II+??2 

= evC -@fh - W21 1 JU n, m, Y b, b’, A,, B,, P,)H,(y”*xp) exp( -7x2,), 
r=O 

(5) 

where: P, = (aA, + a’B,)/(a + a’), xp = x - P,, y = a + a’, and 6 = ua’/(u + a’). 
Having in mind the orthogonality of Hermite polynomials, the expansion coef- 

ficients E, are determined as: 

E,(n, m, y, b, b’, A,, B,, P,)7~~‘~2’t! =s’” H,(bx,)H,(b’x,)H,(y”‘x,) 
-cc 

x exp(-yx~bW*x,), (6) 

and by further use of the formula: 

H,(x) = (d/duY exp( - 24’ + 2ux) 1 u = o, (7) 

ENS are given by: 
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n+m 

Et@, m, Y, b, b’, A,, B,, P,)= C 2k-fb’kk!/t! 
k=r 

k-l 

z. pjy-(j+‘)/2pk,pj-rK -“2r[(j+ 1)/2]/[j!(k-j-t)!] 

min(n,k) 

X c ff,-.i(-bAx) ffm-k+i(-b’Bx), (8) 
i=max(O,k-m) 

where: Pj = (l( - 1)‘)/2 and r is gamma function. 
In the special case of P, = 0, Eq. (8) yields: 

Cwl Cm/21 CWJ 
E,(n,m,y,b,b’, A,,B,,O)=P,,,+,n!m! c 1 1 (-l)ic’+’ 

i=O J=O k=O 

x (~b)“-2i(2b~)m~2j2-2kyit-j~(n+m)/2 

x fr”‘T[(n + m 4- t - 2(i+j+k) -t- 1)/2]/[i!j!k! 

x (n - 2i)!(m - 2j)!(t - 2/c)!], (9) 

where [t/2], the summation limit, denotes the largest integer less than or equal to 
t/2. 

The recursion relation valid for the Hermite polynomials implies that the 
expansion coefficients El satisfy the following recursion relation in t and n: 

bE,- ,(n - 1, m, Y, b, b’, A,, 4, P,) 

=E,(n,m,y,b,b’,A,,B,,P,)+(2bA,-2P,) 

xE,(n-l,m,b,b’,A,,B,,P,)-(n-l)E,(n-2,m,y,b,b’,A,,B,,P.~). 

(10) 

An analogous recursion is valid in m as well. 
The product of two SGHG functions located at generally two different centres A 

and B can be expanded in terms of HG functions located at the center P. The 
expansion is given by 

9J4 b, rA) qJa’, b’, rB) = explT -6(A - W2 J 

NI Nz N3 
x 1 c c E,,(n,,n;,y,b,,b;,A,,B,~,P,) 

I, = 0 t* = 0 I) = 0 

x Elz(n2, 4 Y, b2, &, Ay, By, P,) 

x E,,h, 4, Y, b,, 6, A,, B,, P,)f,(y, rp), (11) 

where: N,=n,+nj, i= 1, 2, 3. 
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For the special case of bi = b2 = b, = a ‘I2 the above Equation reduces to the 
product of two HG functions. 

An analogous procedure can be also applied for the CHG functions. 
The expansion of the product of two CHG functions is formally equivalent to the 

above equation after the substitution of q and E by (pc and EC, respectively, 

E?(n, m, Y, b, b’, A,, B,, P,) = j) Ci(Ax) f C,(&) 
i= [O,l-m] j= [O, f-n] 

x E,(i,i Y, b, b’, A,, B,, P,), (12) 

where: [p, r] = max(p, r). The quantities E,(i, j, . ..) are the same as in Eq. (8). 
The use of Eq. (7) and Leibnitz’s rule yields the following property of Hermite 

polynomials 

H,Cb(x, +p)l= i (;) Wp)“-‘H,(bx,). 
i=o 

(13) 

By using it the product of two HOCHG functions is formally equivalent to 
Eq. (11) with the substitution of cp by (Pi and of the quantities E, by Ef’, where the 
latter 

Ey(n, m, Y, b, b’, P, P’, A,, B,, P,) = 

m 

X 

= 0 
“: Wp’Y-‘E,(C j, Y, b, b’, A,, B,, P,). (14) 

j=[O,f-n] J 

III. OVERLAP AND KINETIC ENERGY INTEGRALS OVER PGHG FUNCTIONS 

Following the procedure explained in Ref. [16] and the orthogonality of the 
Hermite polynomials the following formula for the overlap integral over PGHG 
functions is obtained 

Gd’W I cPZ(rd) = (dY)3’2Ei(nl, 4)EoP(n2, 4) 

x Ei(n,, n;) exp[ -&A -B)‘], (15) 

where the upper index P refers to any of PGHG functions. 
The kinetic energy integrals over PGHG can be expressed as the follwing linear 

combination of the overlap integrals over PGHG: 

GdkJ l-4/4 d’(rd) = -l/2 i i q,Wcp~h) I ‘P~+2c1-ii)u,(rB))y (16) 
s=l i=o 

where: qs(0) = af2/bi2, qs( 1) = (2n: + l)(a’2/bi2 - a’), q,(2) = 4n:(nI - 1 )(d2/bj2 - 
2~’ + bj2), u1 = (LO, 0), u2 = (0, 1, 0), and u3 = (0, 0, 1). 

581/&/2-15 
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Here, the upper index P refers to HG, SGHG, and HOCHG but not to CHG 
functions. The kinetic energy integrals over CHG can be, according to their 
definition, expressed as linear combinations of the overlap integrals over SGHG 
functions. 

IV. NUCLEAR ATTRACTION INTEGRALS OVER PGHG FUNCTIONS 

The nuclear attraction integrals over PGHG functions are given by 

=2rr/yexp[-6(A-B)‘] ? z ? (-l)kEk,(~l,n;) 
k, = 0 k2 = 0 k, = 0 

x Ef2(n2, nh)E&h, 4) g(k K), (17) 

where:k=k,+k,+k,, N,=n,+nj, i=l,2,3, andK=y’/‘(C-P). 
The upper index P refers to any of PGHG functions. The functions g [2] (or the 

functions RNLM in Refs. [ 16, 171) are defined by 

g(k, K) = (i3/8KX)k1 (8/aKY)kz (8/aKz)k3 1: exp( -K’s’) ds, (18) 

and they can be expressed as an integral over an even polynomial and Gaussian 
function: 

g(k K)=(-l)kJ’i 5 P,(-1)“22k-‘C,(k, K)sZk-‘exp(-K*s2)&, (19) 
0 I=0 

with P, = (1 + ( - 1)‘)/2. The coefficients C, are given by 
(kl. t) 

C,(k,K)=k,!k2!k3! 1 pi,lC(E’l/2)! tkl - il)!l 
il= [O, I - kZ - kj] 

(kz, f - il) 
X c 

K~I - ilKkz - izK$ - I + 11 f ij 
Y 

i2=~o,,~i,~k31 (iJ2)! [(t-il-iz)/2]! (k,-i*)!(k,-t+i,+i,)!’ (20) 

where the symbol (p, r) appearing above the summation sign stands for min(p, r) 
and the symbol [p, r] appearing below the summation sign stands for max (p, r). 

The special cases of C, appear when one, two, or all three components of K equal 
zero. Then, Ck’s are given, respectively, by: 

C,(k, K,, KY, 0) = Pk3( - l)k312kl ! k2! k,!/(k,/2)! 

(kl>t) 
x c Pi,Kt1-i’K;2--L/{(i,/2)! [(t-&)/2]! 

i,= [O,tpkzl 

x(k,-i,)! (k2-f+i,)!}; (21) 
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C,(k, K,, 0,O) = Pk2Pk,( - 1)(k2+k3)‘2kl! k,! k3!/[(k2/2)! 

x(k,/2)! (t/2)! (k,-t)!]K;i-‘; 

C,(k, 0, 0, 0) = P,, Pk2 Pk,( - 1 )(“I + ‘2 + k,“2 k, ! k, ! k, !/ 

C(k,PY (k,PY V42Yl~,,. 

(22) 

(23) 

For the special case K = 0 the function g is given by 

.dk, 0) = Co&, 0, 0, 0)/P, + k, + k3 + 1). (24) 

Generally, the function g, expressed by Eq. (19) can be computed by only one 
numerical integration if the Rys quadrature [20] is used. 

The same procedure can be used for the computation of the nuclear attraction 
integrals as well thus yielding: 

NAI=2rc/yexp[-@A-B)‘] D Q[c,+~s,(s)exp(-K2s2)ds. (25) 

Q is an even polynomial of the order 2(n, +n,+n, +n; +n; +n;) in the integra- 
tion variable S: 

n + n' 

Q&,+,,,(s) = 1 s’jSip(n, n’). 
j=O 

The parametric coefficients ST are the function of all input parameters, 

V-4 

(n + n',2j) (Nl,k) 
Sf(n,n’)=(-1)’ 1 (-1)k2+k C -qn,, 6) 

k=j k,=[O,k-Nz-N,] 

(Nz.k--kl) 

X c ‘%3~2, ni)E,P-k,-k2h, n;)C2(k-j,(h K), (27) 

kl=[O,k-k,-Nj] 

where k=(k,, kZ, k-k,-k2). 

V. TWO-ELECTRON REPULSION INTEGRALS OVER PGHG FUNCTIONS 

Two-electron repulsion integrals over PGHG functions are expressed as 

N,+N; Nz+N;Nj+N; 

=G 1 1 1 y~'g(t,K)AP(tl,n,,n;,nl,n;") 
1, =o 12 = 0 I, =o 

x AP(t2, n2, n;, n;, n;“) AP(t,, n3, n;, n;, n;l), (28) 
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where 

and 

G=2n5’2(y,yZ))1 (y,+~~))‘/~exp[--6,(A-B)~-~~(C-D)~] (29) 

(n + n’,r) 
AP(r, n, n’, n”, n”‘) = 1 (y,/y2)i’2E3z, n’)E;&(n”, n”‘), (30) 

j= CO,*- n” -n”‘, 

where: y, = a + a’, y2 = a” + a”‘, 6, = aa’/y , , 6, = a”a”‘/y,, and Nj = n, + n! J’ 

N;=nj”+$“,j=1,2,3. 
The upper index P in (28) and (30) refers to any of PGHG functions. The func- 

tion g in (28) has been already defined by Eq. (18). The meaning of other symbols 
in Eq. (28) is: K = B”‘(P - Q), b = y, y,/(a + a’ + a” + a”‘), P = (aA + a’B)/y,, and 
Q = (a”C + a”‘D)/y2. 

In analogy with the nuclear attraction integrals two-electron repulsion integrals 
can be also computed using a numerical integration over an even polynomial (Rys 
quadrature) in the form 

ERI = G 1“ P&S) exp( -K2s2) ds, (31) 
0 

with 

P2&) = F SjS2J and M = n + n’ + n” + n”‘. (32) 
j=O 

The coeficients Sj are given by 

(M.W (M1.k) (Mz.k) 
s,~(-l)J 1 22j-kyg/2 c c 

k=j I, = [O.k- Mz- A431 ,2= [O,k- 1, -MI] 

xC,(,~i)(t,,t2,k-t,-t,,K)AP(t,,n,,n;,n;,nr') 
x AP(t2, n,, n;, n;, n;‘)A’(k- t, - t2, n3, n;, n;, n;l), (33) 

where M, = Ni + Ni, i = 1,2,3, and M = M, + M, + M,. The functions C and A 
have been defined in (20) and (30), respectively. 

VI. COMPUTATIONAL CONSIDERATIONS 

The overlap, kinetic energy, nuclear attraction, and two-electron repulsion 
integrals over SGHG and PGHG functions are expressed in terms of the coef- 
ficients E and EP, respectively. Other one- and two-electron integrals can be 
expressed in this way as well [ 111. 

Atomic basis sets may be represented by different PGHG functions. In building 



MOLECULAR INTEGRALS OVER HG FUNCTIONS 481 

up a computational program it is important to notice that the input ordinal 
number “I” of the basis function with the exponential parameters a(Z) determines 
all other parameters: n,(Z), Q(Z), Q(Z), b,(Z), . . . . in which way the type of input 
basis function is defined. 

Therefore it is useful to compute three matrices of the order three of E coef- 
ficients: EX(Z, J, K), EY(Z, J, K), and EZ(Z, .Z, K) before the ab initio calculation is 
performed. The loops over Z, J follow the ordinal numbers of basis functions. The 
loops over K run from zero up to n,(Z) + n,(J), n,(Z) + n,(J) and n,(Z) + n,(J) for 
EX, EY, and EZ, respectively. It is also possible to store the most frequently used 
values of the function exp[ - @A - B)] as a 2-dimensional matrix in order to save 
time. 

Already determined E coeflicients are needed for all types of molecular integrals. 
When the basis set is large enough then the calculation of all the above-mentioned 
quantities requires a small fraction of the total ab initio calculation time. 

If the two-electron integral is calculated by use of Eq. (28) it requires the forma- 
tion of matrices g for the function g(t, K) (according to the method described in 
Refs. [ 16, 171). When two-electron integrals are computed, first the coefficients A 
have to be calculated. If two-electron integrals are calculated by use of Eq. (31) 
calculation of the quantity A and the polynomial coeffkients S(J) is relquired. 
Afterward the numerical Rys quadrature is applied. Thus the two-electron integrals 
can be completely calculated by using numerical integration only once. This 
algorithm generally applies for all PGHG functions. 
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